

crontabber

crontabber is a cron job manager. Written in Python. Uses PostgreSQL for storage.

Killer features include:

	Retries jobs on failure automatically

	Dependency-aware, and won’t execute child jobs that depend on parents that
have failed

	Nagios integration making it easy to monitor health of jobs

You start crontabber with crontab and internally it figures out which jobs
to run when and in what ideal order.

crontabber requires Python 2.6 or Python 2.6 and PostgreSQL 9.2 or greater.

User Guide

	Introduction
	Quickstart

	Creating your first app

	More Advanced Apps
	Apps with dependencies

	About the job frequency

	Running at specific times

	Postgres specific apps

	@with_subprocess

	Nagios reporting
	What is Nagios reporting?

	How crontabber can be a Nagios script

	Backfillable Jobs
	What is backfilling?

	An example explains it

	When does the magic kick in?

	A caveat about backfillable jobs

	Running from bash
	Locking

	crontab

	Parallel crontabbers

	Advanced Configuration
	configman

	Advanced settings
	Setting up settings

	Overriding settings

	Raven
	Configure your API key

	Different protocols

	Command line options
	--configtest

	--reset-job=

	--job= and --force

	--audit-ghosts

	--version

	Contributing
	GitHub

	Coding style

	Running tests
	nosetests

	Example project

Indices and tables

	Index

	Module Index

	Search Page

Introduction

Quickstart

To get started, install with pip:

pip install crontabber

It installs all the dependencies you need.

Note if you’re trying to install Python dependencies that rely on C bindings
on OSX Maverick not only do you need to have XCode installed, you might also
need to set:

export CPPFLAGS=-Qunused-arguments
export CFLAGS=-Qunused-arguments

Once it’s installed it creates an executable called crontabber so you
should now be able to run:

crontabber --help

The first thing you need to do is to create a config file. You do that with:

crontabber --admin.dump_conf=crontabber.ini

That creates a file called crontabber.ini which you can open and get
familiar with. The file is big and possibly confusing as there are many
things you can change. The most important thing is to note that it shows
all default settings left commented out.

Before we can start writing our first app we need to set credentials to
connect to Postgres. Open your newly created crontabber.ini file and look
for the settings: dbname, user and password.
Perhaps you want to create a new database first to test against:

createdb crontabber

Depending on how you have set up Postgres server you might need to supply a
username and password. Proceed to edit your crontabber.ini and set:

dbname=crontabber
user=myusername
password=mypostgrespassword

You can see where the default settings are set and you can change those lines.
Let’s try to see if it works:

crontabber --admin.conf=crontabber.ini --list

You’ll possibly see lots of logging on stdout but you shouldn’t see any errors.

Great progress so far!

Creating your first app

The most important setting is the jobs setting. Let’s create our first
job. First change the line #jobs='' to this:

jobs='''
jobs.myapp.MyFirstApp|5m
'''

Now crontabber is going to need to do the equivalent of:

from jobs.myapp import MyFirstApp

So, let’s create a very simple sample app:

mkdir jobs
touch jobs/__init__.py
emacs jobs/myapp.py

So now we’re creating our app (myapp.py). Let’s start with this:

import datetime
from crontabber.base import BaseCronApp

class MyFirstApp(BaseCronApp):
 app_name = 'my-first-app'

 def run(self):
 with open(self.app_name + '.log', 'a') as f:
 f.write('Now is %s\n' % datetime.datetime.now())

And that’s it! Let’s try that it can be imported by opening a
python interpreter:

$ python
>>> from jobs.myapp import MyFirstApp

Because you created this job in current directory you’re in and when you run
crontabber it won’t know which Python path that is referring to, so you’re
going to need to add PYTHONPATH=. to the command line or you can, for now,
just run:

export PYTHONPATH=.

Finally we’re ready to run:

crontabber --admin.conf=crontabber.ini --list

Since you’ve never run the job before you should see something like this:

=== JOB ==
Class: jobs.myapp.MyFirstApp
App name: my-first-app
Frequency: 5m
NO PREVIOUS RUN INFO

OK. Brace yourself, we’re about to run crontabber for the first time:

crontabber --admin.conf=crontabber.ini

Remember what our little app does. It creates a file called
my-first-app.log. Open that file and you should see something like:

$ cat my-first-app.log
Now is 2014-05-08 14:28:14.593252

Try running crontabber again, noticing that it’s not been 5 minutes since
we last run it:

crontabber --admin.conf=crontabber.ini

Did it write another line to my-first-app.log? Try waiting more than
5 minutes and run again. You can run the above mentioned command as many times
as you like.

If you’re curious how this state is remembered, you can open your database
and look at the two tables it created automatically:

$ psql crontabber

crontabber=# select * from crontabber;
...
crontabber=# select * from crontabber_log;
...

Let’s move on to write More Advanced Apps.

More Advanced Apps

This documentation carries on the Quickstart.

Apps with dependencies

When you wrote your first app (jobs.myapp.MyFirstApp) you had to set
an app_name on the class. That’s how you reference other apps when setting
up dependency management. This is important to note. The name of the Python
file or the name of class does not matter.

Diving in, let’s now create two more apps. For simplicity we can continue
in the file myapp.py you created. Add this:

class MySecondApp(BaseCronApp):
 app_name = 'my-second-app'
 depends_on = ('my-first-app',) # NOTE!

 def run(self):
 with open(self.app_name + '.log', 'a') as f:
 f.write('Second app run at %s\n' % datetime.datetime.now())

Exactly where you add this app doesn’t really matter. Before or after or even
in a different file. All the matters is the app_name attribute and
the depends_on. It event doesn’t matter which order you place it in
your crontabber.ini‘s jobs setting. You can change your
crontabber.ini to be like this:

jobs='''
jobs.myapp.MySecondApp|1h
jobs.myapp.MyFirstApp|5m
'''

crontabber reads the jobs setting but when there’s dependency linking
apps, even though it reads the jobs setting from top to bottom, it knows
that jobs.myapp.MySecondApp needs to be run after jobs.myapp.MyFirstApp.

Go ahead and try it:

crontabber --admin.conf=crontabber.ini

If you now look at the timestamps in my-first-app.log and my-second-app.log
are in the correct order according to the dependency linkage rather than the
order they are written in the jobs setting.

Another important thing to appreciate is that if a job fails for some reason,
i.e. a python exception is raised, it will stop any of the dependening jobs
from running. Basically, if job B depends on job A, job B will not
run until job A ran without a failure. Basically, crontabber not only
makes sure the order is correct, it also guards from running dependents if
their “parent” fails.

About the job frequency

In the above example note the notation used for the jobs setting.
It’s python.module.and.classname|5m or python.module.and.classname|1h.

The frequency is pretty self explanatory. 5m means every 5 minutes
and 1h means every hour. The other thing you could use is, for example,
3d meaning every 3 days.

Running at specific times

Suppose you have a job that is really intensive and causing a lot of stress
in your server. Then you might want to run that “at night” (in quotes because
it means different things in different parts of the world) or whenever you
have the least load in your server.

The way to specify time is to write it in HH:MM notation on a 24-hour
clock. E.g. 22:30.

The way you specify the time is to add it to the jobs second like this
example shows:

jobs='''
jobs.myapp.MyBigFatWeddingApp|2d|21:00
```





But here’s a very important thing to remember. The timezone is that of your
PostgreSQL server. Not the timezone of your server.
However, when you install PostgreSQL it will take the timezone from your
server’s timezone. So if you have a server on the US west coast, the default
timezone will be US/Pacific.

However, you can, and it’s a good idea to do, change the timezone of your
PostgreSQL server. So if you have set your PostgreSQL server to UTC and
the crontabber will adjust these times in UTC time.




Postgres specific apps

crontabber provides several class decorators to make use of postgres
easier within a crontabber app.  These decorators can imbue your app class
with the correct configuration to automatically connect with Postgres and
handle transactions automatically.  The three decorators provide differing
levels of automation so that you can choose how much control you want.


@using_postgres()

This decorator tells crontabber that you want to use postgres by adding to
your class two class attributes: self.database_connection_factory and
self.database_transaction_executor.  When execution reaches your run
method, you may use these two attributes to talk to postgres.  If you want
a connection to Postgres you can grab one from the
database_connection_factory and use it as a context manager:

# ...
with self.database_connection_factory() as pg_connection:
    cursor = pg_connection.cursor()





The connection that you get from the factory is a psycopg2 connection,
so you have all the resources of that module available for use with your
connection.  You don’t have to worry about opening or closing the connection,
the context manager will do that for you.  The connection is open and ready
to use when it is handed to you, and is closed when the context ends.  You are
responsible for transactions within the lifetime of the context.

If you want help with transactions, there is also a the
database_transaction_executor at your service.  Give it a function that
accepts a database connection as its first argument, and it will execute the
function within a postgres transaction.   If your function ends normally (with
or without a return value), the transaction will be automatically committed.
If an exception is raised and that exception escapes outside of your function,
then the transaction will be automatically rolled back.

@using_postgres()
class MyPGApp(BaseCronApp):
    def execute_lots_of_sql(connection, sql_in_a_list):
        '''run multiple sql statements in a single transaction'''
        cursor = connection.cursor()
        for an_sql_statement in sql_in_a_list:
           cursor.execute(an_sql_statement)

    def run(self):
        sql = [
            'insert into A (a, b, c) values (2, 3, 4)”,
            'update A set a=26 where b > 11',
            'drop table B'
        ]
        self.database_transaction_executor(
            execute_lots_of_sql,
            sql_in_a_list
        )








@with_postgres_connection_as_argument()

This decorator is to be used in conjunction with the previous decorator.  When
using this decorator, your run method must be declared with a database
connection as its first argument:

@using_postgres()
@with_postgres_connection_as_argument()
class MyCrontabberApp(BaseCronApp):
    app_name = 'postgres-enabled-app'
    def run(self, connection):
        # the connection is live and ready to use
        cursor = connection.cursor()
        # ...





With this decorator, the database connection is handed to you.  You don’t
have to get it yourself.  You don’t have to worry about closing the connection,
it will be closed for you when your ‘run’ function ends.  However, you are
still responsible for your own transactions: you must explicitly use ‘commit’
or ‘rollback’.  If you do not ‘commit’ your changes, they will be lost when
the connection gets closed at the  end of your function.

You still have the transaction manager available if you want to use it.  Note,
however, that it will acquire its own database connection and not use the one
that was passed into your run function.  Don’t deadlock yourself.




@as_single_postgres_transaction()

This decorator gives you the most automation.  It considers your entire run
function to be a single postgres transaction.  You’re handed a connection
through the parameters to your run function.  You use that connection to
accomplish database stuff.  If your run function exits normally, the ‘commit’
will happen automatically.  If your run function exits with a Exception
being raised, the connection will be rolled back automatically.

@using_postgres()
@as_single_postgres_transaction()
class MyCrontabberApp(BaseCronApp):
    app_name = 'postgres-enabled-app'

    def run(self, connection):
        # the connection is live and ready to use
        cursor = connection.cursor()
        cusor.execute('insert into A (a, b, c) values (11, 22, 33)')
        if bad_situation_detected():
            raise GetMeOutOfHereError()





In this example, connections are as automatic as we can make them.
If the exception is raised, the insert will be rolled back.  If the exception
is not raised and the ‘run’ function exits normally, the insert will be committed.






@with_subprocess

crontabber is all Python but some of the tasks might be something other
than Python. For example, you might want to run rm /var/logs/oldjunk.log
or something more advanced.

What you do then is use the with_subprocess helper.
When you use this helper on your application class, you can use
self.run_process() and it will return a tuple of exit code, stdout, stderr.
This example shows how to use it:

from crontabber.base import BaseCronApp
from crontabber.mixins import with_subprocess

@with_subprocess
class MyFirstCommandlineApp(BaseCronApp):
    app_name = 'my-first-commandline-app'

    def run(self):
        command = 'rm -f /var/logs/oldjunk.log'
        exit_code, stdout, stderr = self.run_process(command)
        if exit_code != 0:
            self.config.logger.error(
                'Failed to execute %r' % command,
            )
            raise Exception(stderr)











          

      

      

    

  

    
      
          
            
  
Nagios reporting


What is Nagios reporting?

Nagios [http://www.nagios.org/] is a common system administration tool for doing system health
checks. It works by a central node continually asking questions about
“various parts”. These parts can be scripts. The scripts have a simple
protocol that they have to adhere to; it’s the exit code these scripts
exit on.


	0 - everything is fine

	1 - warning (don’t get out of bed)

	2 - critical (things are on fire!)



The script also has an opportunity to emit a message. It does this by emitting
a single line on stdout followed by a newline. The convention is to
prefix the message according to the exit code. For example:

$ ./is-everything-ok.sh
OK - Everything is fine!
$ echo $?
0

$ ./is-everything-ok.sh
WARNING - This could get very bad!
$ echo $?
1

$ ./is-everything-ok.sh
CRITICAL - Call the fire department!
$ echo $?
2








How crontabber can be a Nagios script

This is very simple. You simply use the --nagios parameter. Like this:

crontabber --admin.conf=crontabber.ini  --nagios





The rules for which exit code to exit on are fairly simple. However, you
need to understand a bit more about
Backfillable Jobs.

If no application in your configuration has errored in the last run
the exit code is simply 0 (“OK”).

If any of your applications that is not a backfillable job has errored
the exit code is 2 (“CRITICAL”).

Suppose you have a backfillable job and it has only errored once, then the
exit code is 1 (“WARNING”).

Suppose you get a 1 or a 2 then the message that is printed on
stdout will look like this for example:

CRITICAL - my-first-app (MyFirstApp) | <type 'exceptions.OSError'> | [Errno 13] Permission denied: '/etc'





If you have multiple apps that have failed, the messages (like the example
above) will be concatenated with a ; character so it’s all one long line.







          

      

      

    

  

    
      
          
            
  
Backfillable Jobs


What is backfilling?

Backfilling is basically a crontabber app that receives a date to its
run() function. For example:

import datetime
from crontabber.base import BaseCronApp
from crontabber.mixins import as_backfill_cron_app

@as_backfill_cron_app
class MyBackfillApp(BaseCronApp):
    app_name = 'my-backfill-app'

    def run(self, date):
        with open(self.app_name + '.log', 'a') as f:
            f.write('Date supplied: %s\n' % date)





The date parameter is a Python <datetime.datetime> instance variable
with timezone information.

What crontabber guarantees is that that method will never be called
with the same date value twice.

The point of all this is if the app was to fail, it will be retried
automatically by crontabber and when it does that needs to know exactly
what dates have been tried before.




An example explains it

Suppose that you have a stored procedure in a PostgreSQL database. It needs
to be called exactly once every day. Internally the stored procedure is
programmed to raise an exception if the same day is supplied twice. For


example it might do something like this:


CREATE OR REPLACE FUNCTION cleanup(report_date DATE)
    RETURNS boolean
    LANGUAGE plpgsql
AS $$
BEGIN

SELECT 1 FROM reports_clean
WHERE report_date = report_date;
IF FOUND THEN
    RAISE ERROR 'Already run for %.',report_date;
    RETURN FALSE;
END IF;

INSERT INTO reports_clean (
    name, sex, dob, report_date
)
SELECT
    name, sex, dob, report_date
FROM ( SELECT
           TRIM(both ' ' from full_name)
           gender,
           date_of_birth::DATE
       FROM data_collection
       WHERE
           collection_date = report_date
           AND
           gender = 'male' OR gender = 'female'
);

RETURN TRUE;
END;
$$;





The example is not a real-world example but it demonstrates the importance
of really making sure the same date isn’t passed into the function twice.
If it was, you’d have duplicates for a particular date and that would be bad.




When does the magic kick in?

When things go wrong. If for example, you have some network outtage or a
bug in your code or something then the triggering will cause an error.
That’s OK because crontabber will catch that and take note of exactly
what date it tried to pass in.

Then, the next time crontabber runs it will re-attempt to execute the
job app with the same date, even if the wall clock says it’s the next day.
It will also know which other days it has not been able to execute and
re-attempt those too.

Suppose you have a daily app that is configured to be backfillable. The app
depends on presence of some external third party service which
unfortunately goes offline for three days. It’s not a problem, crontabber
will try and try till it works and will accordinly pass in the correct dates.




A caveat about backfillable jobs

Because the integrity of which apps have been passed with which dates is
important, it means you can’t use crontabber to run an individual job as
a “one off”. That means that if you try:

crontabber --admin.conf=crontabber.ini --job=my-backfill-app





It will deliberately ignore that since there’s a risk it then “disrupts” its
predictable rythem. Otherwise it could potentially be calling the same app
with the same date twice.







          

      

      

    

  

    
      
          
            
  
Running from bash


Locking


Note

At the time of writing, crontabber does not handle locking.



This might change in the future.

Generally, locking is a standard bash task that is best described elsewhere.
However, this chapter should hopefully get you going in the right direction.

One example implementation of a lockfile is this:

#!/bin/bash
lockdir=/tmp/crontabber.lock
if mkdir "$lockdir"
then
    echo >&2 "successfully acquired lock"
    PYTHONPATH=. crontabber --admin.conf=crontabber.ini

    # Remove lockdir when the script finishes, or when it receives a signal
    trap 'rm -rf "$lockdir"' 0    # remove directory when script finishes

    # Optionally create temporary files in this directory, because
    # they will be removed automatically:
    tmpfile=$lockdir/filelist

else
    echo >&2 "cannot acquire lock, giving up on $lockdir"
    exit 0
fi





This means that if you have a job that sometimes takes longer than how
frequently your crontab runs, you won’t run the risk of starting the
same job more than once.




crontab

This is the heart of it all. Installing and setting up crontabber doesn’t
run anything until you actually start running it yourself and the best way
to do that is with crontab.

Before you set up your crontab it’s recommended that you wrap this in a
shell script that takes care of paths and options and stuff. That means you
can keep your crontab clean and simple. Something like this should good
enough:

*/5 * * * * myuser /path/to/crontabber_wrapper.sh





And then you can put the actual execution in that one script. For example,
suppose you need a Python virtualenv. Like this for example:

#!/bin/bash
source /home/users/django/venv/bin/active
HOMEDIR=/home/users/django

PYTHONPATH="$HOMEDIR/jobs" crontabber --admin.conf="$HOMEDIR/crontabber.ini"





There are many more things you can do and set up. The point is that you
basically do what you were able to do on the command line and freeze that into
one script that can be executed from anywhere.

You will probably also want to combine this with the section on Locking above.




Parallel crontabbers

Suppose you have some jobs that take a reeeeeaaallly long time. Equally,
you might have
some jobs that are quick and needs to run often too. Because crontabber
is single threaded running your jobs will block other jobs. This is a good
thing because it asserts that dependent jobs don’t start until their
“parents” have finished successfully.

To prevent completely independent jobs from waiting for each other, you can run
multiple parallel instances of crontabber. This means that you will need
to have two lines (or more) in crontab. Here’s an example:

*/5 * * * * myuser /path/to/crontabber_wrapper.sh A
*/5 * * * * myuser /path/to/crontabber_wrapper.sh B





And in your wrapper script you take that first parameter like this for example:

PYTHONPATH="$HOMEDIR/jobs" crontabber \
  --admin.conf="$HOMEDIR/crontabber.$1.ini"





That means you need two config files:


	crontabber.A.ini

	crontabber.B.ini



You might think that means you have to duplicate things across two different
files. Thankfully that’s not the case. See
Advanced Configuration.







          

      

      

    

  

    
      
          
            
  
Advanced Configuration


configman

Work in progress...







          

      

      

    

  

    
      
          
            
  
Advanced settings

All configuration in crontabber is handled by the fact that it’s built
on top of configman [https://github.com/mozilla/configman]. configman is agnostic to configuration file
format (e.g. .ini or .json) and that means you can reference much more
than just strings and integers. For example, you can reference Python
classes by their name and they get imported automatically when need be.

We strongly recommend that when you write a crontabber app that you
set a sensibile default and only use a configuration file when you
need to override it. Sometimes you can’t put in a sensible default as
the value can’t be written in code. Like a password for example.


Setting up settings

The trick to adding configuration is to set a class attribute on your
crontabber app called required_config. Let’s dive straight
into an example:

import datetime
from crontabber.base import BaseCronApp
from configman import Namespace

class MyFirstConfigApp(BaseCronApp):
    app_name = 'my-first-config-app'

    required_config = Namespace()
    required_config.add_option(
        'date_format',
        default='%m/%d %Y - %H:%M',
        doc="Format for how the date is reported in the log file."
    )

    def run(self):
        with open(self.app_name + '.log', 'a') as f:
            dt = datetime.datetime.now()
            f.write('Now is %s\n' % dt.strftime(self.config.date_format))





The magic to notice is how you import Namespace from configman,
create a class attribute called required_config and then inside the
run() method you can reference to by self.config.date_format.




Overriding settings

So, there are now two ways of overriding this other than letting the
default value play. You can either do it in your existing configuration
file (crontabber.ini if you’ve played along from the
Introduction) or you can do it right on the
command line as local environment variables.

If you intend to use non-trivial notation for environment variables in bash
you have to prefix the command with a program called env that is
built in on almost all version of bash. So, here’s an example of doing
just that:

env crontabber.class-MyFirstConfigApp.date_format="%A" crontabber --admin.conf=crontabber.ini





Run that and you’ll notice it picked up the override setting.

Another way of specifying this is in your crontabber.ini file. Note!
Setting this requires that you do it under the [crontabber] section
heading. It looks like this:

...

[crontabber]

    ...

    [[class-MyFirstConfigApp]]

        # Format for how the date is reported in the log file.
        date_format=%W %y %h:%M





If you ever forget this notation, after you have added some setting options
you can run:

crontabber --admin.conf=crontabber.ini --admin.print_conf=ini





and look at the commented out examples.

Now, run it again and it should pick this up. Now you don’t need to specify
anything extra on the command line, so you can use:

crontabber --admin.conf=crontabber.ini





Let’s now make a setting that is something the app needs to
import (as a Python module, class or function) on the fly. Let’s say
we want override what function our simple app uses to generate the datetime.
So we add another config called date_function and tell the config that
this is something it needs to import:

import datetime
from crontabber.base import BaseCronApp
from configman import Namespace

class MyFirstConfigApp(BaseCronApp):
    app_name = 'my-first-config-app'

    required_config = Namespace()
    required_config.add_option(
        'date_format',
        default='%m/%d %Y - %H:%M',
        doc="Format for how the date is reported in the log file."
    )
    required_config.add_option(
        'date_function',
        default=datetime.datetime.now,
        doc="Function that generates datetime instance"
    )

    def run(self):
        with open(self.app_name + '.log', 'a') as f:
            dt = self.config.date_function()
            f.write('Now is %s\n' % dt.strftime(self.config.date_format))





Configman automatically notices that the default isn’t a string but something
pythonic that it can use. But if you want to change that, in a
crontabber.ini file you have to reference it as a string. How do you do
that? This trick isn’t for the faint of heart but it’s very powerful one.
What you do is you write a from_string_converter function.

Mind you, this is a rather odd and complicated example but it shows the
power of being able to change anything from a config file:

import datetime
from crontabber.base import BaseCronApp
from configman import Namespace

def function_converter(function_reference):
    module, callable, function = function_reference.rsplit('.', 2)
    module = __import__(module, globals())
    callable = getattr(module, callable)
    return getattr(callable, function)

class MyFirstConfigApp(BaseCronApp):
    app_name = 'my-first-config-app'

    required_config = Namespace()
    required_config.add_option(
        'date_format',
        default='%m/%d %Y - %H:%M',
        doc="Format for how the date is reported in the log file."
    )
    required_config.add_option(
        'date_function',
        default=datetime.datetime.now,
        doc="Function that generates datetime instance",
        from_string_converter=function_converter
    )

    def run(self):
        with open(self.app_name + '.log', 'a') as f:
            dt = self.config.date_function()
            f.write('Now is %s\n' % dt.strftime(self.config.date_format))





Now, let’s try this out on the command line:

env crontabber.class-MyFirstConfigApp.date_function="datetime.datetime.utcnow"\
crontabber --admin.conf=crontabber.ini





The documentation on configman [http://configman.readthedocs.org/en/latest/typeconversion.html] has more examples of using the
from_string_converter.







          

      

      

    

  

    
      
          
            
  
Raven

raven [https://github.com/getsentry/raven-python] is a Python program for sending in Python exceptions as a message
to a Sentry [https://getsentry.com/] server. Both as free and Open Source but Sentry exists as
a paid service if you don’t want to self-host.

What raven does is that it makes it possible to package up a Python
exception (type, value, traceback) and send it in to a server. Once
the server receives it, it makes a hash of the error and adds an entry
to its database. If the same error is sent again, instead of logging
another entry to its database it increments the previous one.


Configure your API key

To configure your crontabber to send all exceptions into a Sentry
server you need an API key. When you have that you add that to your
crontabber.ini file. So it looks
something like this:

[sentry]

# DSN for Sentry via raven
dsn=https://d3683ad...27f9fbd:0ce...4aeb810311dc@errormill.mozilla.org/14





Note, this is not mandatory. You can always reach the full error details
in the logs of the database. Either by interrogating the database table
yourself or by using the command like this:

crontabber --admin.conf=crontabber.ini --list-jobs








Different protocols

It’s important to note that the protocol used by Sentry has changed in
recent years. That means that you need to be careful with what version
of raven you install. If you have an older version of Sentry you
can not install the latest version of raven because the messages it
transmits won’t be understood.







          

      

      

    

  

    
      
          
            
  
Command line options

This chapter aims to digest some of the command line options
available in crontabber.

One of the important command line options is that on --nagios
which we explored in its own chapter.


--configtest

If you change the config file it’s always a highly recommended and good
idea to first run:

crontabber --admin.conf=crontabber.ini --configtest





first. It checks that you haven’t made any trivial errors in the config
file that will not get caught until it’s too late.

It’s important to remember that this basically only checks the jobs
setting. But if you have some other typo or corruption anywhere in
your files it might catch it simply because it’s unable to load up
the jobs setting at all.

When it validates the jobs setting it checks:


	That the job can be found and imported

	That the frequency is a valid frequency (e.g. 2d is valid 2r is not)

	That the time (clock time the job should fire) is a valid time.

	If a job has a less than daily frequency that a time is not set.



Running this should exit the application with an exit code 0 if all
is well. If not the exit code will be a count of how many apps are
misconfigured.




--reset-job=

This keyword parameter option is pretty self explanatory. It resets the
job and basically pretends the job has never run. Just like the state
database didn’t know about it before before it was ever run the first time.

It’s important to note that this does not clean out the mentioned job
from the logs.

You can either specify the app_name or the notation that specifies
the location of the app class. For example:

crontabber --admin.conf=crontabber.ini --reset-job=my-first-app





Or:

crontabber --admin.conf=crontabber.ini --reset-job=jobs.myapp.MyFirstApp





If you reset a job that has already been reset nothing happens.




--job= and --force

Sometimes you just know a particular job needs to be run here and now.
You can obviously do this outside of crontabber but suppose the
app you have written has a fair amount of business logic in it and
not just a wrapper around something written elsewhere.

The notation is pretty straight forward as you can guess:

crontabber --admin.conf=crontabber.ini --job=my-first-app





or:

crontabber --admin.conf=crontabber.ini --job=my-first-app





However, this will still check if the job is ready to run next. Suppose
a job is not due to run for another hour, then typing in this command
the job will not be run straight away. There’s also another chance
that the job you’re trying to run has a blocking dependency (ie. a job
it depends on failed last time).

If you really want to run it now and can’t wait, add --force like this:

crontabber --admin.conf=crontabber.ini --job=my-first-app --force





There is an important limitation of this command line option. It does
not work with backfill apps. Because backfill apps are very sensitive
about exactly when they run they simply ignore both the --job= and
even the --force parameter.




--audit-ghosts

This command finds jobs that are in the state database but no longer
anywhere in your configuration. For example, suppose you decide to
change your list of configured jobs after they have been run. At that point
there will be so called “ghosts”. I.e. jobs that are in the database
but not in the config.

But be careful though! You might have 1 database but two different
configuration files. For example, you might have one configuration called
virtualenv-X-crontabber.ini and one called virtualenv-Y-crontabber.ini.
So the term “ghosts” is only applicable to one configuration file basically.

If you know for certain that a job is no longer needed and stuck as a ghost
in the state database, then use --reset-job= (see above) to clear it out.




--version

Spits out the version of crontabber on standard out.







          

      

      

    

  

    
      
          
            
  
Contributing


GitHub

Please use the GitHub project page [https://github.com/mozilla/crontabber] to report bugs, issues
and feature requests.

And don’t be afraid to express yourself. If something isn’t clear or you
don’t understand something perhaps the documentation or the configuration
or some parameter is not easy enough to understand.

But please try to avoid using GitHub issues to ask questions specific
to your installation. If you need help, the best place to go is to use IRC
and the #breakpad room on irc.mozilla.org.

When reporting bugs, please try to include as much information as you
possibly can. Don’t forget to include exactly what versions you have
of crontabber, configman, Python and PostgreSQL.
But before you share your config files, please please please
make sure they don’t contain any passwords or any other secrets that could
put your system at risk.




Coding style

We try to stick to a strict PEP8 guideline with lines no longer than 79
characters. But functionality is more important than form.
If you have some code to contribute don’t feel intimidated that your code
isn’t perfect. We can always change it later.

But please try to continue the existing patterns. If the code around uses
' instead of " then continue to use '. Consistency makes
the code easier to read and debug.







          

      

      

    

  

    
      
          
            
  
Running tests


nosetests

All the dependencies you need to be able to run tests are encapsulated
in the test-requirements.txt [https://github.com/mozilla/crontabber/blob/master/test-requirements.txt]
file. First install that into your virtualenv:

pip install -r test-requirementst.txt





You also need to create a dedicated PostgreSQL database that you can run
the tests against. And you also you need to be able to connect to this
database. So you need the username and password.

Next, in the root directory of the project create a file called
test-crontabber.ini and it should look something like this:

[resource]
[[postgresql]]
user=myusername
password=mypassword
dbname=test_crontabber





To start all the tests run:

PYTHONPATH=. nosetests





If you want to run a specific test in a specific file in a specific class
you can define it per the nosetests standard like this for example:

PYTHONPATH=. nosetests tests crontabber/tests/test_crontabber.py:TestCrontabber.test_basic_run_job





If you want the tests to stop as soon as the first test fails add -x to
that same command above.

Also, if you want nosetests to not capture stdout add -s to that
same command as above.




Example project

The exampleapp project helps you set up a playground to play around with and
test crontabber to gain a better understanding of how it works.

The best place to start with is to read the
exampleapp/README.md [https://github.com/mozilla/crontabber/blob/master/exampleapp/README.md]
file
and go through its steps. Once you get the basics to work you can start
experimenting with adding your job classes.







          

      

      

    

  

    
      
          
            

Index



 




          

      

      

    

  _static/plus.png





_static/comment-bright.png





_static/ajax-loader.gif





_static/file.png





_static/comment.png





_static/down.png





_static/up-pressed.png





_static/minus.png





_static/comment-close.png





_static/up.png





_static/down-pressed.png





nav.xhtml

    
      Table of Contents


      
        		crontabber


        		Introduction
          
          		Quickstart


          		Creating your first app


          


        


        		More Advanced Apps
          
          		Apps with dependencies


          		About the job frequency


          		Running at specific times


          		Postgres specific apps
            
            		@using_postgres()


            		@with_postgres_connection_as_argument()


            		@as_single_postgres_transaction()


            


          


          		@with_subprocess


          


        


        		Nagios reporting
          
          		What is Nagios reporting?


          		How crontabber can be a Nagios script


          


        


        		Backfillable Jobs
          
          		What is backfilling?


          		An example explains it


          		When does the magic kick in?


          		A caveat about backfillable jobs


          


        


        		Running from bash
          
          		Locking


          		crontab


          		Parallel crontabbers


          


        


        		Advanced Configuration
          
          		configman


          


        


        		Advanced settings
          
          		Setting up settings


          		Overriding settings


          


        


        		Raven
          
          		Configure your API key


          		Different protocols


          


        


        		Command line options
          
          		–configtest


          		–reset-job=


          		–job= and –force


          		–audit-ghosts


          		–version


          


        


        		Contributing
          
          		GitHub


          		Coding style


          


        


        		Running tests
          
          		nosetests


          		Example project


          


        


      


    
  

